Quantitative model of heterogeneous nucleation and growth of SiGe quantum dot molecules.

نویسندگان

  • Hao Hu
  • Hongjun Gao
  • Feng Liu
چکیده

Using a multiscale approach combining continuum model with first-principles calculation, we develop a quantitative theoretical model for heterogeneous nucleation and the growth of a quantum dot molecule-a few islands "strain bonded" by a pit in heteroepitaxy of thin films, in contrast to homogeneous nucleation and growth of isolated strain islands on the surface. We show that the critical size and energy barrier for island nucleation next to a pit is substantially reduced with the increasing pit size, but the reduction approaches an upper bound of ~85% and ~72% for the size and barrier, respectively. Our model also predicts a self-limiting effect on island growth, resulting from an intriguing interplay between island-pit attraction and island-island repulsion, that drives the island size to increase linearly with the pit size, which explains a long-standing puzzle of experimental observation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-Organization of Ripples and Islands with SiGe-MBE

We explored two methods to obtain laterally ordered Ge/Si quantum dot arrays. For the first we exploit the two independent growth instabilities of the SiGe/Si(001) hetero-system, namely kinetic step bunching and Stranski-Krastanov (SK) island growth, to implement a two-stage growth scheme for the fabrication of long-range ordered SiGe islands. The second approach is to deposit Ge/SiGe onto prep...

متن کامل

Formation of Nanopits in Si Capping Layers on SiGe Quantum Dots

In-situ annealing at a high temperature of 640°C was performed for a low temperature grown Si capping layer, which was grown at 300°C on SiGe self-assembled quantum dots with a thickness of 50 nm. Square nanopits, with a depth of about 8 nm and boundaries along 〈110〉, are formed in the Si capping layer after annealing. Cross-sectional transmission electron microscopy observation shows that each...

متن کامل

Three-dimensional Si/Ge quantum dot crystals.

Modern nanotechnology offers routes to create new artificial materials, widening the functionality of devices in physics, chemistry, and biology. Templated self-organization has been recognized as a possible route to achieve exact positioning of quantum dots to create quantum dot arrays, molecules, and crystals. Here we employ extreme ultraviolet interference lithography (EUV-IL) at a wavelengt...

متن کامل

Characterization of a gate-defined double quantum dot in a Si/SiGe nanomembrane.

We report the fabrication and characterization of a gate-defined double quantum dot formed in a Si/SiGe nanomembrane. In the past, all gate-defined quantum dots in Si/SiGe heterostructures were formed on top of strain-graded virtual substrates. The strain grading process necessarily introduces misfit dislocations into a heterostructure, and these defects introduce lateral strain inhomogeneities...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 109 10  شماره 

صفحات  -

تاریخ انتشار 2012